RETRANSLOCATION OF TAGGED CARBON IN AMBROSIA DUMOSA

A. Wallace¹, J. W. Cha¹, R. T. Mueller¹, and E. M. Romney¹

ABSTRACT.— Ambrosia dumosa (A. Gray) Payne cuttings grown in solution culture were exposed to ${}^{14}\text{CO}_2$ to measure the distribution of labeled photosynthate among leaves, stems, and roots after 4, 24, and 48 h. For all sampling periods, the highest levels of ${}^{14}\text{C}$ were found in leaves and the lowest in roots; however, considerable ${}^{14}\text{C}$ had moved to roots in 48 h. In a 12-week study of A. dumosa in solution culture, plants increased in size more than 17 times and flowered and produced seeds. The plants had received ${}^{14}\text{CO}_2$ in photosynthesis at the start. The gradual loss of ${}^{14}\text{C}$ from the plants in the 12 weeks averaged 3.5 percent per week (coefficient of variation = 58 percent). This represents an average respiration rate of 0.21 mg C g dry weight ${}^{14}\text{C}$ 1 h⁻¹. This compares favorably with other means for determining respiration rate. The percentage of ${}^{14}\text{C}$ in the roots of uring that essentially none of the initially fixed ${}^{14}\text{C}$ left the roots during the 12 weeks of test. The ${}^{14}\text{C}$ entering fruits and seeds came from leaves only. The biomass of fruit parts resulted more from new photosynthate than from retranslocation from leaves. In a study in which A. dumosa plants were defoliated, little ${}^{14}\text{C}$ moved from roots to new shoot growth.

The United States International Biological Program Desert Biome has concentrated considerable research effort in studies of the carbon cycle. Certain questions could not be answered easily by conventional procedures, but tagging of plants with ¹⁴C in photosynthesis was one means of obtaining answers for some questions (Wallace et al. 1979, Vollmer et al. 1975, 1976). Among the questions of concern were the following: Does carbon move from leaves to roots continuously, or as a pulse from that which has been newly fixed? Does carbon in roots contribute to new shoot growth? Does carbon in leaves or stems and/or roots contribute to fruit growth? What is the rate of carbon loss due to respiration? These questions could be approached with the 14C technique under controlled conditions.

MATERIALS AND METHODS

Ambrosia dumosa (A. Gray) Payne cuttings were grown for 30 days in solution culture in a glasshouse, at which time the shoots were about 15 cm tall. The shoots were then exposed to ${}^{14}\text{CO}_2$ (about 5 uCi/plant) in plastic bags for 2 h. Two plants each were separated into leaves, stems, and roots after 4, 24, and 48 h. The methods generally were like those previously used (Bamberg et al. 1975).

Two-month-old A. dumosa cuttings growing in 3700 ml nutrient solutions in a glasshouse were exposed to ¹⁴CO₂ by the general procedures described above. Three plants were separated into plant parts for ¹⁴C determination after 24 h, 1 week, 2 weeks, 4 weeks, 8 weeks, and 12 weeks to determine changes in distribution with time.

To ascertain movement of previously fixed ¹⁴C from crown and root materials to shoots, an experiment was conducted in which four *A. dumosa* plants, each growing in 1600 g soil, were exposed to ¹⁴CO₂ as above. Leaves of the plants were sampled at 2 h and 24 h. After 48 h the shoots of the plants were cut off. The shoots were allowed to regrow and at 78 days the plants were removed from the soil and separated into parts, including fine roots separated by salt-flotation with MgSO₄. All plant parts were counted for ¹⁴C by Q-gas counting.

RESULTS AND DISCUSSION

Table 1 shows the distribution of ${}^{14}C$ in leaves, stems, and roots of *A. dumosa* plants at 4, 24, and 48 h after labeling. Most of the

Laboratory of Nuclear Medicine and Radiation Biology, University of California, Los Angeles, California 90024.

label was confined to the leaves and stems, with only 4.7-7.4 percent going to the roots, even though they comprised 15-19 percent of the biomass. Changes with time in the percentage of 14C in the different plant parts were not readily apparent, although the proportion of root 14C might have increased slightly. As the experiment progressed, the amount of ¹⁴C per unit weight decreased due to both dilution by new growth and respiratory loss. Roots maintained a relatively constant 14C;weight ratio, but that of leaves and stems dropped sharply. This seems to indicate that most of the gains and losses of carbon during this 48-hour period occurred in the latter two structures or that dilution was involved.

Redistribution or reallocation of carbon in A. *dumosa* was studied over a 12-week period in a solution culture experiment (Table 2). Changes were followed over six different sampling times. The plants flowered and fruited during the test, which permitted a measure of mobility of the carbon from the initially fixed ¹⁴C. Three plants were harvested at each time period for the measurement.

The plants increased in size over 17 times during the course of the 12-week experiment. The respiratory loss of the 14 C was relatively small. The estimates were about 9 percent at one week, 4 percent for 2 weeks, 14 percent for 4 weeks, 33 percent for 8 weeks, and 22 percent for 12 weeks. The irregularity of the values indicate variability. A normalized value for all five values results in 3.5 percent loss per week as an average. The standard deviation for the 3.5 percent value is 2.07 percent, with a coefficient of variation of 58 percent.

If this value (3.5 percent per week) represents a respiration rate, it would be 2.1 \times 10⁻⁴ mg C mg dry weight⁻¹h⁻¹ or 0.21 mg C g dry weight⁻¹h⁻¹ at any point in the history of these plants. This compares fairly well for actual respiration measurements. It represents the respiration rate for the active growing stages and not for dormancy for this species (Vollmer et al. 1976).

The percentage of ¹⁴C in the root portion

Hours Whole after plant Stem Root labeling Leaf Dry weight, mg 252 1303 642 109 4 429 2541708 24 1025 616 376 2207 -48Percent plant parts by weight 100 49.3 31.4 19.34 14.9100 24 60.0 25.1100 27.917.04855.1cpm/plant part (× 1000) 608 25.2 424 1594 617 145 35.3 437 24 554 147 48 366 Percent of ¹⁴C in plant parts 100 69.726.24.14 23.5 5.7100 24 70.87.4 100 48 66.1 26.5 $\text{cpm/g}(\times 1000)$ 467 660 389 100 4 362 24 427 339 139 25148 301 240109

TABLE 1. Distribution of ¹⁴C in Ambrosia dumosa grown in solution culture after tagging with ¹⁴CO₂ in photosynthesis. of the plants varied little for the six sampling periods, even when seeds were produced. It was about the same at 24 h (5.1 percent) as at 12 weeks (5.8 percent). We may conclude, therefore, that the ¹⁴C moved to roots only on the day of fixation. None left the roots thereafter during the 12 weeks of test. More dry matter than ¹⁴C was moved to the fruiting parts and seeds, implying that most of the photosynthate used for fruiting was new. The ¹⁴C that was translocated to seeds seemed to come from leaves only.

Redistribution of carbon in *A. dumosa* was further studied with plants grown in soil. Four plants exposed to ¹⁴CO₂ were defoliated

after 2 days, and a portion of the stem was also removed. Any ¹⁴C thereafter found in leaves and new stems had to be translocated from old parts. After 78 days following defoliation 8 percent of the 14C was in the leaves, and 0.5 percent was in new stems with more than 57 percent in roots (Table 3). This indicates as in the other tests that ¹⁴C is not readily moved from roots after initial fixation. The small amount of ¹⁴C that did move to the leaves probably was mobilized when the leaves were initiated. At 78 days, 24 percent of the plant biomass was leaves with 8 percent of the 14C. Thirty percent of the plant biomass was roots with 57.5 percent of the ¹⁴C

TABLE 2. Dry weight and distribution of dry weight and ¹⁴C in plant parts at different times following exposure of Ambrosia dumosa to ¹⁴CO₂.

Plant part	2 h	1 week	2 weeks	4 weeks	8 weeks	12 weeks
		Dry w	eight, mg/plant			
Leaf	992	1.191	3,350	3,520	7.655	18,361
Stem	700	1,454	1,758	3,226	6,752	10,150
Transition	58	94	133	212	224	1,078
Root	190	397	576	890	2,304	2,555
Seed	-	_	_	2,023	2,673	1,816
Total	1,940	3,856	5,817	9,871	19,608	33,960
			cpm/g			
Leaf	553,267	274,933	163,347	109,760	41,950	18,990
Stem	338,980	124,540	109,673	61,447	20,240	17,910
Transition	72,695	62,120	91,013	34,860	26,020	16,780
Root	222,033	112,987	78,693	54,513	17,630	14,830
Seed	222,000	112,307	10,030	38,920	18,910	36,360
Seeu	_	_	_	36,920	16,910	50,500
			cpm/plant			
Leaf	548,841	525,395	547,212	386,355	321,127	348,675
Stem	237,286	181,081	192,806	198,228	136,660	181,787
Transition	4,216	5,839	12,105	7,390	5,828	18,089
Root	42,186	44,856	45,327	48,516	40,620	37,891
Seed	_	Table -	-	78,735	50,546	66,030
		Dry weight/tot	tal plant weight ((percent)		
Leaf	51.1	49.6	57.6	35.7	39.0	54.0
Stem	36.1	37.7	30.2	32.7	34.5	29.9
Root	9.8	10.3	9.9	9.0	11.8	7.5
Transition	3.0	2.4	2.3	2.1	1.1	3.2
Seed	0.0	0.0	0.0	20.5	13.6	5.4
Total	100.0	100.0	100.0	100.0	100.0	100.0
			plant (percent)			
Leaf	65.9	69.4	68.6	53.7	57.9	53.4
Stem	28.5	23.9	24.2	27.6	24.6	27.9
Transition	0.5	0.8	1.5	1.0	1.1	2.8
Root	5.1	5.9	5.7	6.8	7.3	5.8
Seed	0.0	0.0	0.0	10.9	9.1	10.1
Total	100.0	100.0	100.0	100.0	100.0	100.0

remo

ABLE 3. Distribution of ¹⁴ C in A. dumosa pl	ants 78 days after -	exposure of the shoots	to ¹⁴ CO ₂ and 76 days after
oval of all the leaves and the stems from the	plants.°		- · ·

Plant part	Dry wt g/plant	cpm/g	cpm∕ plant	Percent dist.	SD of percent dist.	CV of percent dist. percent.
Leaves	2.02	610	1232	8.0	2.50	31
New stems	0.53	135	72	0.5	0.07	13
Old stems	2.53	1520	3846	24.9	7.31	29
Crown	0.82	1725	1415	9.1	6.03	66
Big root	0.37	2580	955	6.2	3.18	51
Small root	0.33	3525	1163	7.5	1.47	20
Fine root	1.82	3730	6789	43.8	11.78	27
Totals or means	8.42	1838	15472	100.0	_	-

*Leaf concentration of ¹⁴C at 2, 24, and 48 h from exposure to ¹⁴CO₂ were 82,135, 39,670, and 37,230 cpm/g dry weight, respectively.

Leaf concentrations of ¹⁴C at 2 h, 24 h, and 48 h from exposure to ¹⁴CO₂ (82,135, 39,630, and 37,230 cpm/g) indicated that either there was considerable loss due to dark respiration in this C-3 plant or that this period was the time in which translocation to roots primarily occurred.

It can be argued that these experiments under partially controlled conditions may not represent field conditions adequately. In the companion study with *Larrea tridentata* (Sesse & Moc ex DC.) Cov. in the field (Wallace et al. 1980), ¹⁴C persisted in plants, especially in the roots, for more than three years after time of fixation.

Acknowledgments

This study was supported by an IBP Desert Biome subcontract with Utah State University, Logan, Utah, and Contract EY-76-C-03-0012 between the U.S. Department of Energy and the University of California.

LITERATURE CITED

- BAMBERG, S. A., G. E. KLEINKOFF, A. WALLACE, AND A. VOLLMER. 1975. Comparative photosynthetic production of Mojave Desert shrubs. Ecology 56:732–736.
- VOLLMER, A. T., S. A. BAMBERG, A. WALLACE, AND J. W. CHA. 1975. Plant productivity and nutrient interrelationships of perennials in the Mohave Desert. US/IBP Desert Biome Res. Memo 75-7. Utah State University, Logan, Utah.
- VOLLMER, A. T., A. WALLACE, J. W. CHA, AND T. HARTSOCK. 1976. Plant productivity and nutrient interrelationships of perennials in the Mohave Desert. US/IBP Desert Biome Res. Memo. 76-6. Utah State University, Logan, Utah.
- WALLACE, A., S. A. BAMBERG, AND J. W. CHA. 1977. Partitioning of photosynthetically fixed ¹⁴C in perennial plants of the northern Mohave Desert. Pages 144-148 in IBP/Interbiome Symposium: the belowground ecosystem: a synthesis of plantassociated processes, Range Sci. Series No. 16, Colorado State University, Fort Collins, Colorado.
- WALLACE, A., E. M. ROMNEY, AND J. W. CHA. 1980. Persistence of ¹⁴C labeled carbon in *Larrea tridentata* up to 40 months after photosynthetic fixation in the northern Mojave Desert. Great Basin Nat. Mem. 4:170–174.